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1. UNIT SYLLABUS 

 

Unit V: Motion of System of Particles and Rigid body 

 

 Chapter 7: System of particles and Rotational Motion 

 

Centre of mass of a two-particle system; momentum conservation and centre of mass motion. 

Centre of mass of a rigid body; Centre of mass of a uniform rod. 

 

Moment of a force; torque; angular momentum; law of conservation of angular momentum 

and its applications. 

 

Equilibrium of rigid bodies; rigid body rotation and equations of rotational motion; 

comparison of linear and rotational motions. 

 

Moment of inertia; radius of gyration; values of moments of inertia for simple geometrical 

objects (no derivation). Statement of parallel and perpendicular axes theorems and their 

applications. 
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2. MODULE-WISE DISTRIBUTION OF UNIT SYLLABUS         8 Modules 

 

The above unit is divided into eight modules for better understanding. 

Module 1  Rigid body 

 Centre of mass 

 Distribution of mass 

 Types of motion: Translatory, circulatory and rotatory 

Module 2  Centre of mass  

 Application of centre of mass to describe motion  

 Motion of centre of mass 

Module 3  Analogy of circular motion of a point particle about a point and 

different points on a rigid body about an axis 

 Relation v = rω 

 Kinematics of rotational motion 

Module 4  Moment of inertia 

 Difference between mass and moment of inertia 

 Derivation of value of moment of inertia for a lamina about a vertical 

axis perpendicular to the plane of the lamina  

 unit 

 Radius of gyration  

 Perpendicular and parallel axis theorems 

Module 5  Torque  

 Types of torque  

 Dynamics of rotator motion  

      

Module 6  Equilibrium of rigid bodies 

 Condition of net force and net torque  

 Applications 

Module 7  Law of conservation of angular momentum and its applications. 

 Applications 

Module 8  Rolling  on plane surface   

 Rolling  on Horizontal  

 Rolling  on inclined surface  

 Applications 

 

Module 7 
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3. WORDS YOU MUST KNOW 

Let us remember the words we have been using in our study of this physics course. 

 

 Rigid body: An object for which individual particles continue to be at the same 

separation over a period of time. 

 

 Point object: A point object is much smaller than the distance due to change in its 

position. 

 

 Distance travelled: The distance an object has moved from its starting position. Its 

SI unit is m and it can be zero or positive. 

 

 Displacement: The distance an object has moved from its starting position moves 

in a particular direction. Its SI unit is m and it can be zero, positive or negative. 

 

 

 Speed: Rate of change of position and its unit m/s. 

 

 Average speed: Average speed =
                 

                   
 Its unit is m/s 

 

 

 Velocity (v):  Rate of change of position in a particular direction and its unit is 

m/s. 

 

 Instantaneous velocity The velocity at an instant is defined as the limit of the 

average velocity as the time interval ∆t becomes infinitesimally small   velocity at 

any instant of time  

 Uniform motion:  object covers equal distance in equal interval of time. 

  

 Non uniform motion: object covers unequal distance in equal interval of time. 

 



 

  

Physics-01 (Keph_10707) 

Physics 2019 Physics-01 (Keph_10707) System of Particles and Rotational Motion 

 

 Acceleration (a): rate of change of velocity with time and its unit is m/s
2
. Velocity 

may change due to change in its magnitude or change in its direction or change in 

both magnitude and direction.   

 

 Constant acceleration: Acceleration which remains constant. 

 Momentum (p): The impact capacity of a moving body is mv and its unit is kg 

m/s.  

 Force (F): Something that changes the state of rest or uniform motion of a body. 

Unit of force is Newton. It is a vector, as it has magnitude which tells us the 

strength or magnitude of the force and the direction of force is very important.  

 Constant force: A force for which both magnitude and direction remain the same 

with passage of time. 

 

 Variable force: A force for which either magnitude or direction or both change 

with passage of time. 

  

 External unbalanced force: A single force or a resultant of many forces that act 

externally on an object. 

 

 Kinematics: Study of motion without involving the cause of motion. 

 Dynamics: Study of motion along with the cause producing the motion.  

 Vector: A physical quantity that has both magnitude and direction .displacement 

is a vector, force is a vector, acceleration is a vector etc.  

 

 Vector algebra: Mathematical rules of adding, subtracting and multiplying 

vectors. 

 

 Resolution of vectors: A vector can be resolved in two mutually perpendicular 

directions. We used this for vector addition and in our study of motion in 2 and 3 

dimensions.  
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 Dot product: two vectors on multiplication yield a scalar quantity. Dot product of 

vector A and B:  A.B | || |      where θ is the angle between the two vectors.  

Dot product is a scalar quantity and has no direction. It can also be taken as    the 

product of magnitude of A and the component of B along A or product of B and 

component of A along B. 

 

 Work:  Work is said to be done by an external force acting on a body  if it 

produces displacement W= F.S cosθ, where work is the dot product of vector F( 

force) and Vector S  (displacement) and θ is the angle between them .  Its unit is 

joule and dimensional formula is         . It can also be stated as the product of 

component of the force in the direction of displacement and the magnitude of 

displacement. Work can be done by constant or variable force and work can be 

zero, positive or negative. 

 

 Energy: The ability of a body to do work. Heat, light, chemical, nuclear, 

mechanical are different types of energy. Energy can never be created or 

destroyed it only changes from one form to the other.  

 

 

 Kinetic Energy:  The energy possessed by a body due to its motion = ½ mv
2
, 

where „m‟ is the mass of the body and „v‟ is the velocity of the body at the instant 

its kinetic energy is being calculated. 

 

 Conservative force: A force is said to be conservative if the work done by the 

force in displacing a body from one point to another is independent of the path 

followed by the particle and depends on the end points. Example: gravitational 

force. 
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 Non-conservative forces: A force is said to be non-conservative if: the work done 

by it on an object depends on the path and the work done by it through any round 

trip is not zero. Example: friction. 

 

 Work Energy theorem:  Relates work done on a body  to the change in 

mechanical energy of a body i.e., W = F.S = ½ mVf
2 

- ½  mVi
2
 

 

 Conservation of mechanical energy: Mechanical energy is conserved if work done 

is by conservative forces. 

 

 Potential energy due to position: Work done in raising the object of mass m to a 

particular height (distance less than radius of the earth) = „mgh‟.  

 

 Collision:  Sudden interaction between two or more objects. We are only 

considering two body collisions.  

 Collision in one dimension: Interacting bodies move along the same straight path 

before and after collision.  

 

 Elastic collision: Collision in which both momentum and kinetic energy is 

conserved.  

 Inelastic collision: Momentum is conserved but kinetic energy is not conserved. 

 

 Coefficient of restitution:  The ratio of relative velocity after the collision and 

relative velocity before collision. Its value ranges from 0-1. 

 

 Torque: It is rotational analogous of Force and it has following characteristics:  

 

i. Torque is the turning effect of the force about the given axis of rotation. 

ii. The torque equals the moment of the force about the given axis/ point of 

rotation. 
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iii. Just as force equals the rate of change of linear momentum, torque equals 

the rate of change of angular momentum. 

 

 Mechanical equilibrium: It implies either the object is at rest and stays at rest is said to be 

in static mechanical equilibrium or the center of mass, of the system, moves with a 

constant velocity is said to be in dynamic mechanical equilibrium. 

 

 First condition for equilibrium: is that the center of mass of the body has zero 

acceleration; this happens when if the vector sum of all external forces acting on the body 

is zero.  It is also called the condition for the translatory equilibrium. In vector and 

component forms, we can write:  

                                                                         
⃗⃗ ⃗⃗ ⃗⃗  ⃗    

 Second condition for an extended body to be in equilibrium is that the body must have no 

tendency to rotate. It is also called the condition for the rotational equilibrium. In vector 

and component forms, we can write:  

                                                                                    ⃗⃗ ⃗⃗ ⃗⃗  ⃗    

 Center of gravity: It is that point in a given body, around which the resultant torque, due 

to the gravity forces, vanishes. The concept can be useful in designing structures, 

especially buildings, bridges etc., so that they remain stable under the influence of the 

forces acting on them. 

4. INTRODUCTION  

We had seen, in the unit of laws of motion, how the  linear momentum, of a moving particle can 

be regarded as to measure of its linear motion; we had also seen how the rate of change of linear 

momentum is related to the force. Likewise, the concept of Angular momentum is used in 

rotational motion. All moving objects can have some sort of angular momentum but it is used 

most often to describe rotating objects. Forces in certain cases can change the angular 

momentum of an object. As in the case of linear momentum, the greater the mass of an object 

and the faster it is moving, the more difficult it is to slow it down or to stop its movement as well 

as rotation. 
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In the module on torque, we studied that a body when subjected to an external torque undergoes 

angular acceleration i.e. change in its angular velocity. Also, the change in angular velocity 

depends on the moment of inertia of the system if the torque acting on the system and its time 

duration, remain same. In such a case, higher the moments of inertia lower the change in angular 

velocity. Therefore, torque is intricately related with the moment of inertia and angular velocity 

of a given system. The quantity is directly related to the moment of inertia of a system, and its 

angular velocity, is its angular momentum. 

                                                                 

How do we define angular momentum? Just as the moment of a force is the rotational analogue 

of force, the quantity, angular momentum is the rotational analogue of linear momentum. We 

shall first define angular momentum for the special case of a single particle. Like the moment of 

a force, angular momentum is also defined through a vector product. It is also called moment of 

(linear) momentum. 

 

For a particle having a constant mass m, a velocity  ⃗⃗ , a momentum   ⃗⃗  ⃗and a position vector 

  ⃗⃗  relative to the origin O, of an inertial frame, we define the angular momentum as:  

   

 ⃗           ⃗⃗  

The value of  ⃗  depends on the choice of origin O, 

since it involves the particle‟s position vector relative 

to O.  

The SI units of angular momentum are kg m
2
/s.  

 The direction of angular momentum vector is 

perpendicular to the plane defined by the of position 

vector (  ) and the linear momentum  ⃗⃗ .  

The Right-Hand Palm rule, for vector products, can be used for determining its direction.  
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According to it, if         ⃗⃗      ⃗⃗  , the direction of  ⃗⃗  is 

represented by the thumb of the stretched right palm and the 

fingers represent the direction of  ⃗⃗ , the direction of their cross 

product       ⃗⃗      ⃗⃗  is represented by the direction along which 

the palm faces, as shown below.  

It means, from equation, 

 ⃗           ⃗⃗  

that if the direction of    , the position vector is represented by the 

thumb of the stretched right palm, and the fingers represent the direction of     ⃗⃗⃗⃗  ⃗     linear 

momentum, the direction of their cross product   ⃗⃗⃗⃗   ,the angular momentum is represented by the 

direction in which the palm faces. 

The magnitude of angular momentum can be written as   

                                             

   Where, Ø is the angle between           ⃗⃗ .  

This means that the magnitude of angular momentum 

can also be expressed as:   

                                                    

 

Where,           is the length of the 

perpendicular, drawn from O, on the line drawn along 

the direction of   ⃗⃗⃗⃗ .  

This distance plays the role of “lever arm” for the momentum vector. 

 

5. ANGULAR MOMENTUM OF A RIGID BODY 
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Consider a rigid object rotating about a fixed 

axis, that coincides with the z axis of a 

coordinate system, (as shown in the Figure). 

Let‟s determine the angular momentum of this 

object. Each particle of the object rotates in the 

x-y plane about the z axis, with an angular speed 

ω. The magnitude of the angular momentum, of 

a particle of mass mi about the z axis is 

  ℓi = mi vi ri. 

 As vi =   ri ω,  we can express the magnitude of the angular momentum of this particle as    

ℓi = mi ri
2
 ω 

The direction of angular momentum for this i
th

 particle is directed along the z axis. We can now 

find the angular momentum (which in this situation has only a z component) of the whole object 

by taking the sum of ℓi over all the particles:   

        ∑     
   

     ∑   
 
     

       

Here, I=  ∑     
  

    , is the moment of inertia of the object about the z axis. 

 

6. RELATION BETWEEN ANGULAR MOMENTUM AND TORQUE 

When a net force acts on a particle, its velocity and momentum change; so its angular 

momentum may also change. We can show that the rate of change of angular momentum is equal 

to the torque of the net force. We take the time derivative of Eq. (1), using the rule for the 

derivative of a product: 

                       
  ⃗ 

  
  

          ⃗⃗   

  
  

   

  
    ⃗⃗         

  ⃗⃗ 
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The first term is zero because it contains the vector product of two vectors that are really, the 

same vector. In the second term we can replace 
  ⃗⃗ 

  
 with the net force. Hence, 

   
  ⃗ 

  
                =                            (        

  ⃗⃗ 

  
   

Hence, the rate of change of angular momentum of a particle equals the torque of the net force 

acting on it.  

7. ANGULAR MOMENTUM AND TORQUE FOR A SYSTEM OF PARTICLES: 

The total angular momentum of a system of particles about some point axis, is defined as the 

vector sum of the angular moment of the individual particles: 

    
⃗⃗ ⃗⃗ ⃗⃗  ⃗     

⃗⃗⃗⃗     
⃗⃗⃗⃗       

⃗⃗⃗⃗  

Where, the vector sum is over all n particles in the system. 

Differentiating the above equation with respect to time gives the net torque as: 

     
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  

  
 

    
⃗⃗ ⃗⃗     

⃗⃗ ⃗⃗       
⃗⃗ ⃗⃗   

  
     ⃗⃗⃗⃗     ⃗⃗⃗⃗       ⃗⃗⃗⃗      ⃗⃗ ⃗⃗ ⃗⃗  ⃗    

We conclude that the total angular momentum of a system can vary with time only if a net 

external torque is acting on the system. It applies even if the center of mass is accelerating, 

provided the torque and angular momentum are evaluated relative to an axis through the center 

of mass. 

Let us do some problems to understand the use of these concepts in different situations: 

 

EXAMPLE: 

A projectile of mass m is launched with an initial velocity v at an angle θ with the 

horizontal as shown in figure.  

Find the angular momentum of the particle about the origin just before it strikes the 

ground. 
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SOLUTION: 

As shown in the figure above a particle is 

projected with velocity v at an angle θ with the 

horizontal. It‟s speed we know will be same when 

it strikes the ground, also the angle with ground 

will be equal to that of angle of projection but the 

vertical component of velocity will get reversed in 

direction. 

Therefore,  

Initial velocity  ⃗⃗                  ̂           ̂  

Final velocity  ⃗⃗                ̂           ̂  

Angular momentum of the projectile, considering it to be point sized, about the origin will be 

given by:  

 ⃗           ⃗⃗  ………………….     (1)  

here                                                                             and  ⃗⃗  is 

the linear momentum of the projectile when it hits the ground. 

 As the range of the particle can be written as     
        

 
 

Hence  

  ⃗⃗ ⃗⃗  ⃗       ̂      ̂       
        

 
  ̂       ̂  …………………    .(2) 

  ⃗⃗      ⃗⃗                   ̂           ̂  ………. (3) 

Using equation (1), (2) and (3) one can write 

 ⃗      (
        

 
 )  ̂                ̂           ̂   
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    ⃗    
          

 
        ̂ 

 

EXAMPLE: 

A rod of mass m and length D is pivoted about one end. As shown in the figure, the rod can 

rotate in the x-y plane, counterclockwise, as viewed from the +z- axis, with an angular 

speed ω.  

Find the angular momentum of the rod about the ‘pivot-point’. 

SOLUTION: 

Let I cm be the moment of inertia, of the rod, about an axis passing 

through the rod's center of mass and perpendicular to the x-y plane, 

Also let I pivot be the moment of inertia about an axis passing 

through the pivot point perpendicular to the x-y plane. 

First method:  

The rod rotates about a fixed axis passing through the pivot point. The motion of the rod is 

contained in the xy-plane, perpendicular to the axis of rotation. The angular momentum about the 

axis passing through the pivot is: 

      
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗          ⃗⃗ …….(1) 

Where, Ipivot is the moment of inertia of the rod about the axis passing through the pivot point. It, 

being the moment of inertia of a rod, about its end point which can be given as  

       
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗=  (

   

 
  ⃗⃗  -------------(1) 

 

Another method: 
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We can also think that the rod is rotating and translating, we can 

then calculate the angular momentum of the rod about the pivot 

point as the sum of the angular momentum centre of mass of the 

rod about the pivot point and angular momentum of the rod 

about the centre of mass. Hence, 

      
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗            ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗        ⃗⃗⃗⃗⃗⃗  ⃗        ⃗⃗  ⃗….                          (2) 

 Where             is the position vector of the rod's center of mass with respect to the pivot point 

and      is the velocity of the center of mass. 

We can now show that the results, given by equation (1) and equation (2) are equivalent to each 

other. 

1. The axis, passing through the pivot point and through the center of mass, are parallel axis and 

are separated a distance D/2. The parallel axis theorem implies that: 

Ipivot = Icm + m(D/2)
2
  ……………..   ( 3) 

 

2. The center of mass is the equivalent point of the rigid object therefore, as for any other point 

of the rod, it rotates about the pivot with the angular speed ω. The linear speed of the center of 

mass can be expressed as: 

vcm =ωD/2    …………………           ( 4) 

 

3. The position and velocity vectors are perpendicular to each other:  

               

As a result,  

 

                 |          ||    |        ̂             ̂…….. (5) 

 

Starting with equation (2) and using equation (5) we obtain: 
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⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ =                      ⃗⃗             ̂+       ̂ 

 

Using (4) the above expression becomes: 

 

      
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ =   (

 

 
)
 

         ̂……(6) 

 

From equation (3) and (6), we can write 

      
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗          ⃗⃗  

This is the same as the result given by equation (1). 

 

8. CONSERVATION OF ANGULAR MOMENTUM 

We all know that we see the sun appear to „go up‟ and „come down‟ in the sky every day. The 

spinning of the earth, around its axis, helps us understand this beautifully. The mere thought, of 

the earth's stopping its rotation abruptly during the night, seems preposterous and unthinkable. 

But why can't it stop?  

If there is no net external torque acting on a system, or if the system is isolated, 

      ⃗⃗ ⃗⃗ ⃗⃗  ⃗  
     
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  

  
   

 i.e      
⃗⃗ ⃗⃗ ⃗⃗  ⃗             

 This means that there is no change in angular momentum, i.e. the angular momentum of the 

system remains conserved, when it is isolated, or when the net external torque, acting on it, is 

zero. 

If the system is an object rotating about a fixed axis   is its moment of inertia about this axis. In 

this case, we can express the conservation of its angular momentum by saying that:   
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        ⃗⃗ ⃗⃗  ⃗      ⃗⃗ ⃗⃗  ⃗ 

                             

Here, I1 and I2 are the moments of inertia of the (isolated) system, for two different arrangements 

of its „mass- particles‟. Its corresponding angular velocities, in the two cases, are             

This result is valid both for rotation about a fixed axis and for rotation about an axis through the 

center of mass of a moving system as long as that axis remains parallel to itself.  

We only require only that the net external torque acting on the system is zero.  

Acrobats, skaters, divers and other sports persons make use of the principle of conservation of 

angular momentum to show off their feats. At the time of jumping, the diver gives herself/ 

himself a slight rotation, by which he/she acquires some angular momentum. When he/she is in 

air, there is no torque acting on him and therefore his angular momentum must be conserved. If 

he folds his body (fig A) to decrease his/her moment of inertia his rotation must become faster. If 

he unfolds his/her body before entering into pool of water, his/her moment of inertia increases 

and he/she must rotate slowly (fig C). 
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https://live.staticflickr.com/35/106394787_633237da39_b.jpg 

 Similarly the angular speed of the skater increases when the skater pulls his/her hands and feet 

close to his/her body, thereby decreasing moment of inertia. If one neglects friction between 

skates and ice, no external torques act on the skater. The change in angular speed is due to the 

fact that, because angular momentum is conserved, the product      remains constant, and a 

decrease in the moment of inertia of the skater causes an increase in the angular speed. 

 

https://vimeo.com/ondemand/2019dbnainv 

https://live.staticflickr.com/35/106394787_633237da39_b.jpg
https://vimeo.com/ondemand/2019dbnainv
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watch the video clip  

The above idea is also used by cats, dogs, horses and most animals that wish to jump roll run 

with different speeds make use of the principle of conservation of angular momentum. 

NOTE: 

1. The resultant torque acting on an object about an axis through the center of mass 

equals the time rate of change of angular momentum regardless of the motion of the 

center of mass. This theorem applies even if the center of mass is accelerating, provided 

the torque and angular momentum are both evaluated relative to the center of mass. 

2.  Energy, linear momentum, and angular momentum of an isolated system all remain 

constant or conserved. 

3. When there is no net external torque acting on a system, then       ⃗⃗ ⃗⃗ ⃗⃗  ⃗  
     
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  

  
   

 i.e      
⃗⃗ ⃗⃗ ⃗⃗  ⃗             This means  there is no change in angular momentum, i.e. the 

angular momentum of the system remains conserved under this condition. 

 

EXAMPLE: 

Suppose a girl sitting on a swivel chair (which can rotate), shown in Figure given below, is 

spinning at 0.800 rev/ s with her arms extended. She has a moment of inertia (girl and 

chair) of 2.34 kg ⋅ m2
 with her arms extended and of 0.363 kg ⋅ m2

 with her arms close to 

her body.  

(a) What is her angular velocity in revolutions per second after she pulls in her arms?  

(b) What is her rotational kinetic energy before and after she does this?  
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SOLUTION:  

As there is no external torque on the girl, the movement of her arms results in a change in her 

angular velocity as per the law of conservation of angular momentum. 

(a) Let I and I′ respectively are initial and final moment of inertia of the girl 

and chair taken together. While ω and ω′ be the initial and final angular velocity 

respectively of this system. Iω = I′ω′ …….(1) 

We are given that:  I  = 2.34 kg ⋅ m2 

ω= 0.800 rev/ s 

I′= 0.363 kg m
2
  

Substituting these values in equation (1) we get 

ω′ = I ω/ I′  

ω′ = 
             

     
   = 5.16 rev/s 

(b) Rotational kinetic energy is given by K.E.rot =  
   

 
  

The initial value is found by substituting known values into the equation, after converting 

the angular velocity to rad/s: 

ω= 0.800 x 2π rad/s 
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Therefore, initial K.E.rot =     
   

 
  = 

                    

 
 = 29.6 j 

 

The final rotational kinetic energy is  KE′rot  = 
 ′ ′

 

 
  

Substituting known values of I′ and ω′ = 5.16 x 2π rad/s  into this equation.. 

 

 KE′rot = 
 ′ ′

 

 
 =   

                    

 
= 191 J  

 

We see that the final angular velocity as well as the final kinetic energy, are much greater 

than their initial values. Can one think of the reason behind the increase in kinetic energy 

of the system? This increase in rotational kinetic energy comes from the work done by 

the girl in pulling in her arms.  

 

EXAMPLE: 

A rod of length L and mass M is hinged at point O. A small bullet of mass m hits the 

rod, as shown in the figure. The bullet gets embedded in the rod. Find the angular 

velocity of the system just after the impact.         

SOLUTION:                                  

The net torque on the (rod-bullet) system, at the time of collision between the bullet and the rod 

is zero. Hence, the law of conservation of angular momentum can be applied here. As the system 

will rotate about point O we need to calculate angular momentum about O. We have, 
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As the rod is at rest initially its angular momentum is zero while for the bullet we will use    

  

            ⃗  

  

                                ℓ⃗                            ̂       ̂  ………………….(1) 

The final angular momentum of the system can be written as  

ℓ⃗                        ω⃗⃗  

The moment of inertia of both the rod and the bullet are to be measured about point O; the two 

move together with a common angular velocity ω. 

For the moment of inertia of rod, we will use the parallel axis theorem: 

               

 

                                   
    

  
     

 

 
    

    

 
……………………………..(2) 

                         Also,                  …………………………(3) 

Using equation (1), (2) and (3), we get 

        ̂  (
    

 
      ) ω⃗⃗  

Therefore  ω⃗⃗   
    ̂ 

( 
  

 
   )   

 

Try Yourself: 

1. If the polar caps of earth suddenly melt, will the day length of the day be affected? 
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2. A person sits near the edge of a circular platform revolving with a uniform angular 

speed. What will be the change in the motion of the platform, if the person starts 

moving from the edge towards the centre of the platform? 

3. Comet move around the sun in highly elliptical orbits. As a result, the distance from 

the sun changes significantly while it moves. Does its angular speed get affected due 

to these changes in its distance from the sun?  

 

9. SUMMARY 

1. The angular momentum, of a system of n particles about the origin, is given by: 

    
⃗⃗ ⃗⃗⃗⃗  ⃗  ∑  ⃗⃗       ⃗⃗⃗⃗ 

 

   

 

         Here,   ⃗⃗     the position vector of ith particle whose linear momentum is given by    ⃗⃗⃗⃗  

For a rigid body the angular momentum, about an axis can be expressed as: 

    
⃗⃗ ⃗⃗⃗⃗  ⃗    ⃗⃗  

2. For a rigid body rotating about a fixed axis (say, z-axis) of rotation, ℓz = Iω, where I is the 

moment of inertia about z-axis. In general, the angular momentum ℓ for such a body is 

not along the axis of rotation. Only when the body is symmetric about the axis of 

rotation, L is along the axis of rotation. In that case, ℓ=ℓz= Iω .  

 

3. The angular acceleration of a rigid body rotating about a fixed axis is given by Iα =  .  

 

 

4. If the external torque   acting on the body is zero, its angular momentum about the fixed 

axis (say, z-axis), ℓz (=Iω) remains constant. 

 

 

 


